Mathematics: analysis and approaches Higher level

 Paper 3

 Paper 3}

Tuesday 11 May 2021 (morning)

1 hour

Instructions to candidates

- Do not open this examination paper until instructed to do so.
- A graphic display calculator is required for this paper.
- Answer all the questions in the answer booklet provided.
- Unless otherwise stated in the question, all numerical answers should be given exactly or correct to three significant figures.
- A clean copy of the mathematics: analysis and approaches formula booklet is required for this paper.
- The maximum mark for this examination paper is [55 marks].

Answer all questions in the answer booklet provided. Please start each question on a new page. Full marks are not necessarily awarded for a correct answer with no working. Answers must be supported by working and/or explanations. Solutions found from a graphic display calculator should be supported by suitable working. For example, if graphs are used to find a solution, you should sketch these as part of your answer. Where an answer is incorrect, some marks may be given for a correct method, provided this is shown by written working. You are therefore advised to show all working.

1. [Maximum mark: 27]

This question asks you to explore the behaviour and key features of cubic polynomials of the form $x^{3}-3 c x+d$.

Consider the function $f(x)=x^{3}-3 c x+2$ for $x \in \mathbb{R}$ and where c is a parameter, $c \in \mathbb{R}$.
The graphs of $y=f(x)$ for $c=-1$ and $c=0$ are shown in the following diagrams.

$$
c=-1
$$

$$
c=0
$$

(a) On separate axes, sketch the graph of $y=f(x)$ showing the value of the y-intercept and the coordinates of any points with zero gradient, for
(i) $c=1$;
(ii) $c=2$.
(b) Write down an expression for $f^{\prime}(x)$.

(Question 1 continued)

(c) Hence, or otherwise, find the set of values of c such that the graph of $y=f(x)$ has
(i) a point of inflexion with zero gradient;
(ii) one local maximum point and one local minimum point;
(iii) no points where the gradient is equal to zero.
(d) Given that the graph of $y=f(x)$ has one local maximum point and one local minimum point, show that
(i) the y-coordinate of the local maximum point is $2 c^{\frac{3}{2}}+2$;
(ii) the y-coordinate of the local minimum point is $-2 c^{\frac{3}{2}}+2$.
(e) Hence, for $c>0$, find the set of values of c such that the graph of $y=f(x)$ has
(i) exactly one x-axis intercept;
(ii) exactly two x-axis intercepts;
(iii) exactly three x-axis intercepts.

Consider the function $g(x)=x^{3}-3 c x+d$ for $x \in \mathbb{R}$ and where $c, d \in \mathbb{R}$.
(f) Find all conditions on c and d such that the graph of $y=g(x)$ has exactly one x-axis intercept, explaining your reasoning.
2. [Maximum mark: 28]

This question asks you to examine various polygons for which the numerical value of the area is the same as the numerical value of the perimeter. For example, a 3 by 6 rectangle has an area of 18 and a perimeter of 18 .

For each polygon in this question, let the numerical value of its area be A and let the numerical value of its perimeter be P.
(a) Find the side length, s, where $s>0$, of a square such that $A=P$.

An n-sided regular polygon can be divided into n congruent isosceles triangles. Let x be the length of each of the two equal sides of one such isosceles triangle and let y be the length of the third side. The included angle between the two equal sides has magnitude $\frac{2 \pi}{n}$.

Part of such an n-sided regular polygon is shown in the following diagram.

(b) Write down, in terms of x and n, an expression for the area, A_{T}, of one of these isosceles triangles.
(c) Show that $y=2 x \sin \frac{\pi}{n}$.

Consider a n-sided regular polygon such that $A=P$.
(d) Use the results from parts (b) and (c) to show that $A=P=4 n \tan \frac{\pi}{n}$.
(This question continues on the following page)

(Question 2 continued)

The Maclaurin series for $\tan x$ is $x+\frac{x^{3}}{3}+\frac{2 x^{5}}{15}+\ldots$
(e) (i) Use the Maclaurin series for $\tan x$ to find $\lim _{n \rightarrow \infty}\left(4 n \tan \frac{\pi}{n}\right)$.
(ii) Interpret your answer to part (e)(i) geometrically.

Consider a right-angled triangle with side lengths a, b and $\sqrt{a^{2}+b^{2}}$, where $a \geq b$, such that $A=P$.
(f) Show that $a=\frac{8}{b-4}+4$.
(g) (i) By using the result of part (f) or otherwise, determine the three side lengths of the only two right-angled triangles for which $a, b, A, P \in \mathbb{Z}$.
(ii) Determine the area and perimeter of these two right-angled triangles.

