

Mathematics: analysis and approaches Higher level Paper 3

Tuesday 11 May 2021 (morning)

1 hour

Instructions to candidates

- Do not open this examination paper until instructed to do so.
- A graphic display calculator is required for this paper.
- Answer all the questions in the answer booklet provided.
- Unless otherwise stated in the question, all numerical answers should be given exactly or correct to three significant figures.
- A clean copy of the **mathematics: analysis and approaches formula booklet** is required for this paper.
- The maximum mark for this examination paper is [55 marks].

– 2 –

2221-7108

[1]

Answer **all** questions in the answer booklet provided. Please start each question on a new page. Full marks are not necessarily awarded for a correct answer with no working. Answers must be supported by working and/or explanations. Solutions found from a graphic display calculator should be supported by suitable working. For example, if graphs are used to find a solution, you should sketch these as part of your answer. Where an answer is incorrect, some marks may be given for a correct method, provided this is shown by written working. You are therefore advised to show all working.

1. [Maximum mark: 27]

This question asks you to explore the behaviour and key features of cubic polynomials of the form $x^3 - 3cx + d$.

Consider the function $f(x) = x^3 - 3cx + 2$ for $x \in \mathbb{R}$ and where *c* is a parameter, $c \in \mathbb{R}$.

The graphs of y = f(x) for c = -1 and c = 0 are shown in the following diagrams.

(a) On separate axes, sketch the graph of y = f(x) showing the value of the *y*-intercept and the coordinates of any points with zero gradient, for

(i)	c = 1;	[3]
	-)	

- (ii) c = 2. [3]
- (b) Write down an expression for f'(x).

(This question continues on the following page)

		- 3 -	2221-7108		
(Question 1 continued)					
(c)) Hen	Hence, or otherwise, find the set of values of c such that the graph of $y = f(x)$ has			
	(i)	a point of inflexion with zero gradient;	[1]		
	(ii)	one local maximum point and one local minimum point;	[2]		
	(iii)	no points where the gradient is equal to zero.	[1]		
(d)) Give poin	en that the graph of $y = f(x)$ has one local maximum point and one local minimut, show that	ım		
	(i)	the <i>y</i> -coordinate of the local maximum point is $2c^{\frac{3}{2}} + 2$;	[3]		
	(ii)	the <i>y</i> -coordinate of the local minimum point is $-2c^{\frac{3}{2}} + 2$.	[1]		
(e)	(e) Hence, for $c > 0$, find the set of values of c such that the graph of $y = f(x)$ has				
	(i)	exactly one <i>x</i> -axis intercept;	[2]		
	(ii)	exactly two <i>x</i> -axis intercepts;	[2]		
	(iii)	exactly three <i>x</i> -axis intercepts.	[2]		
Co	onsider	the function $g(x) = x^3 - 3cx + d$ for $x \in \mathbb{R}$ and where $c, d \in \mathbb{R}$.			

Find all conditions on *c* and *d* such that the graph of y = g(x) has exactly one *x*-axis intercept, explaining your reasoning. (f) [6]

2. [Maximum mark: 28]

This question asks you to examine various polygons for which the numerical value of the area is the same as the numerical value of the perimeter. For example, a 3 by 6 rectangle has an area of 18 and a perimeter of 18.

For each polygon in this question, let the numerical value of its area be A and let the numerical value of its perimeter be P.

(a) Find the side length, s, where s > 0, of a square such that A = P.

An *n*-sided regular polygon can be divided into *n* congruent isosceles triangles. Let x be the length of each of the two equal sides of one such isosceles triangle and let y be the length of

the third side. The included angle between the two equal sides has magnitude $\frac{2\pi}{n}$.

Part of such an *n*-sided regular polygon is shown in the following diagram.

(b) Write down, in terms of x and n, an expression for the area, A_T , of one of these isosceles triangles.

(c) Show that
$$y = 2x \sin \frac{\pi}{n}$$
. [2]

Consider a *n*-sided regular polygon such that A = P.

(d) Use the results from parts (b) and (c) to show that
$$A = P = 4n \tan \frac{\pi}{n}$$
. [7]

(This question continues on the following page)

[3]

[1]

2221-7108

[1]

(Question 2 continued)

The Maclaurin series for $\tan x$ is $x + \frac{x^3}{3} + \frac{2x^5}{15} + \dots$

(e) (i) Use the Maclaurin series for
$$\tan x$$
 to find $\lim_{n \to \infty} \left(4n \tan \frac{\pi}{n}\right)$. [3]

(ii) Interpret your answer to part (e)(i) geometrically.

Consider a right-angled triangle with side lengths a, b and $\sqrt{a^2 + b^2}$, where $a \ge b$, such that A = P.

(f) Show that
$$a = \frac{8}{b-4} + 4$$
. [7]

- (g) (i) By using the result of part (f) or otherwise, determine the three side lengths of the only two right-angled triangles for which $a, b, A, P \in \mathbb{Z}$. [3]
 - (ii) Determine the area and perimeter of these two right-angled triangles. [1]