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Answer all questions in the answer booklet provided. Please start each question on a new page. Full
marks are not necessarily awarded for a correct answer with no working. Answers must be supported
by working and/or explanations. Solutions found from a graphic display calculator should be supported
by suitable working. For example, if graphs are used to find a solution, you should sketch these as part
of your answer. Where an answer is incorrect, some marks may be given for a correct method, provided
this is shown by written working. You are therefore advised to show all working.

1. [Maximum mark: 27]

This question asks you to explore the behaviour and key features of cubic
polynomials of the form x’ — 3cx + d.

Consider the function f(x) =x’ — 3cx + 2 for x € R and where c is a parameter, ¢ € R.
The graphs of y =f(x) for c=—1 and ¢ =0 are shown in the following diagrams.
c=-1 c=0

Y y

0, 2) 0, 2)

(@) On separate axes, sketch the graph of y = f(x) showing the value of the y-intercept
and the coordinates of any points with zero gradient, for

i) c=1; [3]
(i) c=2. (3]
(b)  Write down an expression for f'(x). [1

(This question continues on the following page)
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(Question 1 continued)

(c) Hence, or otherwise, find the set of values of ¢ such that the graph of y = f(x) has

(i) a point of inflexion with zero gradient; [11
(i)  one local maximum point and one local minimum point; [2]
(ii) no points where the gradient is equal to zero. [1]

(d) Given that the graph of y = f(x) has one local maximum point and one local minimum
point, show that

3
(i)  the y-coordinate of the local maximum pointis 2¢? +2; [3]

3
(i)  the y-coordinate of the local minimum point is —2¢2 +2. [

(e) Hence, for ¢ >0, find the set of values of ¢ such that the graph of y = f(x) has

(i) exactly one x-axis intercept; [2]
(i) exactly two x-axis intercepts; [2]
(i) exactly three x-axis intercepts. [2]

Consider the function g(x) =x’ — 3cx +d for x € R and where ¢, d € R.

(f)  Find all conditions on ¢ and d such that the graph of y = g(x) has exactly one x-axis
intercept, explaining your reasoning. [6]

Turn over
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2. [Maximum mark: 28]

This question asks you to examine various polygons for which the numerical value
of the area is the same as the numerical value of the perimeter. For example, a 3 by 6
rectangle has an area of 18 and a perimeter of 18.

For each polygon in this question, let the numerical value of its area be 4 and let the
numerical value of its perimeter be P.

(@) Find the side length, s, where s > 0, of a square such that 4 = P. [3]

An n-sided regular polygon can be divided into n congruent isosceles triangles. Let x be the
length of each of the two equal sides of one such isosceles triangle and let y be the length of

2
the third side. The included angle between the two equal sides has magnitude T
n

Part of such an n-sided regular polygon is shown in the following diagram.

(b)  Write down, in terms of x and n, an expression for the area, 4,, of one of these
isosceles triangles. [1]

() Show that y=2xsin_. 2]
n

Consider a n-sided regular polygon such that 4 = P.

(d)  Use the results from parts (b) and (c) to show that A= P =4n tanﬂ. [7]

n

(This question continues on the following page)
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(Question 2 continued)
3 2x5
The Maclaurin series for tan x is x+?+F+...
(e) (i) Use the Maclaurin series for tan x to find lim(4n tanzj. [3]
n—>0 n
(i)  Interpret your answer to part (e)(i) geometrically. 1

Consider a right-angled triangle with side lengths a, b and va® +b* , where a > b, such
that 4 = P.

(f) Show that a = %4‘ 4. [7]

(@) (i) By using the result of part (f) or otherwise, determine the three side lengths of the
only two right-angled triangles for which a, b, A, P € Z. [3]

(i) Determine the area and perimeter of these two right-angled triangles. [1




